Летняя научная школа для молодых ученых "Рентгеновская астрономия и астрофизика частиц" в Зеленогорске, 2014г.
Фонд Дмитрия Зимина "Династия" и Московский физико-технический институт
при содействии Международного центра фундаментальной физики в Москве
организовали Летнюю школу "Рентгеновская астрономия и астрофизика частиц",
которая прошла с 15 по 26 июля 2014г. в Зеленогорске Ленинградской области.
Летняя школа современной астрофизики будет посвящена рентгеновской астрономии,
астрофизике частиц и PIC-моделированию.
Во время работы Школы будут проведены практические и лабораторные работы, а также экзамены
Василий Бескин (Физический институт им.П.Н.Лебедева РАН, Москва)
Сергей Буланов (Фотонный Центр Кансай, Япония)
Андрей Быков (Физико-технический институт им.А.Ф.Иоффе, С.-Петербург)
Андрей Демехов Институт прикладной физики РАН, Н.Новгород)
Марк Дикман (Mark Dieckmann) (Университет Линдкёпинг, Швеция)
Валерий Накаряков (Университет Варвик, Великобритания)
Юрий Путанен (Juri Poutanen) (Университет Туорла, Финляндия)
Михаил Ревнивцев (Институт космических исследований РАН, Москва)
Предварительная программа школы:
"Central engine" in Active Galactic Nuclei // Бескин Василий
Relativistic Laser Plasmas // Буланов Сергей
Lecture 1. Laboratory Astrophysics with Relativistic Laser Plasmas
a) Relativistic Laser-Matter Interaction. Parameters characterizing the interaction regimes. Similarity of entities in space & laboratory laser plasmas (pdf)
b) Nonlinear waves in relativistic plasmas. Magnetic field line reconnection. Collisionless shock waves. Charged particle acceleration (pdf)
Lecture 2. Extreme field limits: Towards Studying of Nonlinear Quantum Electrodynamics Effects with High Power Lasers
a) Relativistic flying mirror concept of electromagnetic field intensification
b) Radiation dominated & QED regimes in the high intensity electromagnetic wave interaction with charged particles & vacuum
c) On the design of experiments for study of extreme field limits
(pdf)
Relativistic Particle Acceleration and Magnetic Field Amplification in Astrophysical Sources
Быков Андрей
Lecture 1. Mechanisms of relativistic particle acceleration
a) Relativistic particles in galactic and extragalactic sources
b) Fermi mechanism of charged particle acceleration
c) Stochastic acceleration by MHD fluctuations
d) Diffusive shock acceleration. Nonlinear models of DSA.
(Pdf part 1, Pdf part 2)
Lecture 2. Non-thermal radiation from astrophysical sources with extreme energy release
a) Radiative signatures of relativistic particles in astrophysical objects
b) Supernova remnants and gamma ray bursts
c) Pulsar Wind Nebulae
d) Starburst galaxies and superbubbles
(Pdf)
Cyclotron resonant interactions in space plasmas: generation of radiation and particle acceleration
Демехов Андрей
Lecture 1
Basic theory of cyclotron resonant interactions. (Pdf)
Lecture 2
Cyclotron generation of noise-like and discrete emissions in space plasmas. (Pdf)
Lecture 3
Acceleration of charged particles by noise-like emissions (quasilinear theory).
Lecture 4
Acceleration of charged particles by discrete emissions (effects of particle trapping). (Pdf of Lecture 3 and 4)
Relativistic particle-in-cell simulations
Дикман Марк
Lecture 1. Motivation
- The plasma approximation and the equations, which are solved by PIC simulations.
- Which plasmas can we model with PIC codes and what are the simulation limits?
- What code do I use, from where can I get it, and how can I run it?
(pdf)
Lecture 2. Field equations (a)
The finite difference approximation for the electromagnetic fields.
Reading in simulation data from the Epoch code using Matlab or Octave.
(pdf)
Lecture 3. Field equations (b)
Properties of the field equations, numerical wave dispersion.
Simulation of waves in a vacuum with the Epoch code and the analysis of the field data.
(pdf)
Lecture 4. The particle equations (a)
Phase space representation of the plasma, the particle update scheme and particle shape functions.
(pdf)
Lecture 5. The particle equations (b)
Defining the plasma parameters for the simulation and introducing computational particles into the simulation.
Analysis of particle data computed by Epoch.
(pdf)
Lecture 6. Data analysis
Overview over data analysis strategies for field and particle data. Getting the right units on the plots.
(pdf)
Lecture 7. Beam instabilities
The two-stream instability, the Weibel instability and the filamentation instability.
(pdf)
Lecture 8. Electrostatic shocks
How do we set up an unmagnetized shock in the simulation and what are its basic properties? How can we identify it in the simulation data?
(pdf)
Lecture 9. Perpendicular shocks
How do we set up a perpendicular shock in the simulation and how do we analyse its data? (DIY simulation)
(Assignment)
Lecture 10. Numerical instabilities
Self-heating instability, numerical Cherenkov radiation and the sideband instability.
(pdf)
Exercises
Exercise 1
Unpacking, compiling and running the code. Work through the examples Run01-Run08.
Reproduce the figures in the lecture notes that correspond to these runs.
Assessment: Show me your figures during the lab session. One for each run.
Exercise 2
Do the exercises in the lab on plasma instabilities: Two-stream, filamentation and Whistler instability.
Assessment: Send me by email the completed input.deck files. Send me the plots stated in the lecture notes.
Exercise 3
Implement the input.deck file for the electrostatic shock simulation.
Assessment: Send me by email the completed input.deck file. Send me also the requested plot.
The email should only contain the Figure(s), the input.deck and your full name.
Quasi-periodic pulsations in solar and stellar flares: Observations and theories
Накаряков Валерий
Lecture 1. Solar and stellar flares
Morphology and phenomenology. Statistics. Flares in different bands (radio, optical, EUV, soft and hard X-rays, gamma-rays). The standard model of the solar flare and its shortcomings. (pdf)
Lecture 2. Magnetohydrodynamics (MHD)
Magnetostatics. Alfven theorem. Magnetic reconnection. (pdf)
Lecture 3. MHD waves
Interaction of MHD waves with plasma inhomogeneities. MHD seismology. (pdf)
Lecture 4. Quasi-periodic pulsations in solar and stellar flares
Observations and theoretical models. (pdf)
Radiative processes in (high-energy) astrophysics
Путанен Юрий
Lecture 1. General description.
Review of most important radiative processes in high-energy astrophysics.
Kinetic equations for electrons and photons.
Radiative transfer equation. Emission and absorption coefficients. Simple solutions.
(Pdf)
Lecture 2. Cyclo-synchrotron radiation.
Larmor formula. Cyclotron radiation. Radiated power.
Emission of relativistic particles. Cooling time. Spectrum of radiation from monoenergetic and from a power-law distribution of electrons.
Synchrotron absorption. Thermalization by synchrotron self-absorption.
(Pdf)
Lectures 3. Compton scattering.
Thomson scattering. Inverse Compton scattering. Radiative power.
Spectrum of emission. Non-relativistic Compton scattering, Kompaneets equation.
Comptonization. Applications to accreting black holes and neutron stars.
Klein-Nishina effect. Electron cooling rate. Synchrotron self-Compton mechanism.
Applications to active galaxies and gamma-ray bursts.
(Pdf)
Lecture 4. Pair production.
Photon-photon pair production cross-section. Pair cascades.
Photon breeding. GeV breaks in blazars.
(Pdf)
X-ray astronomy
Ревнивцев Михаил
Lecture 1
Structure and evolution of stars: X-ray emitting objects. (pdf)
Lecture 2
History and development of X-ray astronomy. (pdf)
Lecture 3
Observational appearances of strong gravity in X-ray observations. (pdf)
data file for a power-law fit
Lecture 4
Methods of measurements of neutron star sizes.
Using the variability information to extract multiple spectral components. (pdf)
Lecture 5
Measurements of cosmic X-ray background. (pdf)
Lab 1
Introduction to low count statistics. Obtaining power spectra flux variability of X-ray sources (pdf)
1st task: LMC X-3 data file and another required file
Later task: source file for data reduction (NGC1068)
You may need also to download the DS9 software for data visualization
Lab 2
Obtaining energy spectrum of emission of X-ray source and its approximation by models. (pdf)
Lab 3
Reconstruction of astronomical images with the help of coding aperture telescopes.
Программа Летней школы рассчитана на студентов-старшекурсников, аспирантов и молодых ученых.
Рабочий язык школы — английский.
Число участников школы — 40 человек, среди которых стипендиаты и грантополучатели
Фонда Династия, а также другие слушатели, отобранные на конкурсной основе
Оргкомитетом Школы. Фонд Династия оплачивает проезд и проживание участников.